প্যাটার্ন ও সিকোয়েন্সের মধ্যে পার্থক্য

Anonim

প্যাটার্ন বনাম সিকোয়েন্স

"প্যাটার্ন" শব্দটির সঠিক সংজ্ঞা দিতে কঠিন। আরো সাধারণভাবে, এটি একটি নির্দিষ্ট পদ্ধতিতে ঘটনা বা বস্তুর পুনরাবৃত্তি মানে। গণিত, জৈব বিজ্ঞান এবং কম্পিউটার বিজ্ঞানের মতো অনেক ক্ষেত্রে নিদর্শনগুলি ব্যবহার করা হয়। শব্দটি 'প্যাটার্ন' এর সংজ্ঞা বা ব্যবহার ক্ষেত্র থেকে ক্ষেত্রের মধ্যে ভিন্ন হতে পারে। আমরা গাণিতিকের অনেকগুলি ক্ষেত্র যেমন নমুনা, জ্যামিতি, যুক্তিবিজ্ঞান ইত্যাদি নিদর্শন খুঁজে পেতে পারি। পুনরাবৃত্ত দশমিক এক উদাহরণ। একটি পুনরাবৃত্ত দশমিক অঙ্কের ক্রম গঠিত, যা অসীমভাবে পুনরাবৃত্তি। উদাহরণস্বরূপ, 1/27 সমবর্তিত দশমিক 0 থেকে সমান। 037037 … সংখ্যা 0, 3, 7 এর অনুক্রম চিরতরে পুনরাবৃত্তি হবে। যাইহোক, সব নিদর্শন পুনরাবৃত্তি অন্তর্ভুক্ত না।

অন্যদিকে সিকোয়েন্সটি একটি স্পষ্ট সংজ্ঞায়িত গাণিতিক শব্দ। একটি ক্রম একটি নির্দিষ্ট ক্রম সাজানো শর্তাবলী (বা সংখ্যা) একটি তালিকা। একটি ক্রম সদস্য রয়েছে, যা কখনও কখনও উপাদান বা পদ বলে, এবং উপাদান সংখ্যা ক্রম দৈর্ঘ্য বলা হয়। সীমিত এবং অসীম ক্রম আছে। ক্রম পদে কোন সীমাবদ্ধতা আছে।

উদাহরণ (এ, বি, সি, ডি) অক্ষর একটি ক্রম। এই অনুক্রমটি ক্রম থেকে পৃথক (A, C, B, D) বা (D, C, B, A), কারণ উপাদানের বিন্যাস ভিন্ন।

কিছু ক্রমগুলি কেবল র্যান্ডম মান হয়, যখন কিছু অনুক্রমের একটি নির্দিষ্ট প্যাটার্ন আছে। যাইহোক, একটি অনুক্রম এটি হিসাব করার জন্য কিছু নিয়ম অনুসরণ করা উচিত। অ্যারিথম্যাটিক এবং জ্যামিতিক সিকোয়েন্সগুলি একটি নির্দিষ্ট প্যাটার্নের সাথে দুটি ধরণের ক্রম। কখনও কখনও, ক্রম গণিত ফাংশন বলা হয়। সর্বাধিকভাবে, n একটি ক্রম শব্দটি একটি n হিসাবে লেখা হয়। উদাহরণস্বরূপ, 5, 7, 9, 11 … একটি সাধারণ গাণিতিক ক্রম যা 2 এর সাধারণ পার্থক্য। N th এই অনুক্রমটি একটি n = 2n হিসাবে লেখা যেতে পারে +3।

অন্য একটি উদাহরণের জন্য, আসুন অনুগ্রহ করে 2, 4, 8, 16 অনুক্রম বিবেচনা করি … এটি একটি সাধারণ অনুপাত সহ একটি জ্যামিতিক ক্রম। N th জ্যামিতিক শব্দ ক্রম হল একটি n = 2 n

প্যাটার্ন ও সিকোয়েন্সের মধ্যে পার্থক্য কি?

• প্যাটার্ন হল এমন একটি উপাদান যা একটি পূর্বাভাসযোগ্য পদ্ধতিতে পুনরাবৃত্তি করে। ক্রম একটি প্যাটার্ন প্রয়োজন নেই।

• প্যাটার্নটি সুনির্দিষ্ট নয়, যখন ক্রমটি সুপ্রতিষ্ঠিত গাণিতিক শব্দ।